3D faces in motion: Fully automatic registration and statistical analysis

نویسندگان

  • Timo Bolkart
  • Stefanie Wuhrer
چکیده

This paper presents a representation of 3D facial motion sequences that allows performing statistical analysis of 3D face shapes in motion. The resulting statistical analysis is applied to automatically generate realistic facial animations and to recognize dynamic facial expressions. To perform statistical analysis of 3D facial shapes in motion over different subjects and different motion sequences, a large database of motion sequences needs to be brought in full correspondence. Existing algorithms that compute correspondences between 3D facial motion sequences either require manual input or suffer from instabilities caused by drift. For large databases, algorithms that require manual interaction are not practical. We propose an approach to robustly compute correspondences between a large set of facial motion sequences in a fully automatic way using a multilinear model as statistical prior. In order to register the motion sequences, a good initialization is needed. We obtain this initialization by introducing a landmark prediction method for 3D motion sequences based on Markov Random Fields. Using this motion sequence registration, we find a compact representation of each motion sequence consisting of one vector of coefficients for identity and a high dimensional curve for expression. Based on this representation, we synthesize new motion sequences and perform expression recognition. We show experimentally that the obtained registration is of high quality, where 56% of all vertices are at distance at most 1mm from the input data, and that our synthesized motion sequences look realistic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Registration of 3D Face Scans with Average Face Models

The accuracy of a 3D face recognition system depends on a correct registration that aligns the facial surfaces and makes a comparison possible. The best results obtained so far use a costly one-to-all registration approach, which requires the registration of each facial surface to all faces in the gallery. We explore the approach of registering the new facial surface to an average face model (A...

متن کامل

Segmentation of brain 3D MR images using level sets and dense registration

This paper presents a strategy for the segmentation of brain from volumetric MR images which integrates 3D segmentation and 3D registration processes. The segmentation process is based on the level set formalism. A closed 3D surface propagates towards the desired boundaries through the iterative evolution of a 4D implicit function. In this work, the propagation relies on a robust evolution mode...

متن کامل

Representing Dynamics of Facial Expressions

Motion capture (mocap) is widely used in a large number of industrial applications. Our work offers a new way of representing the mocap facial dynamics in a high resolution 3D morphable model expression space. A data-driven approach to modelling of facial dynamics is presented. We propose a way to combine high quality static face scans with dynamic 3D mocap data which has lower spatial resoluti...

متن کامل

Fully automatic and robust 3D registration of serial-section microscopic images

Robust and fully automatic 3D registration of serial-section microscopic images is critical for detailed anatomical reconstruction of large biological specimens, such as reconstructions of dense neuronal tissues or 3D histology reconstruction to gain new structural insights. However, robust and fully automatic 3D image registration for biological data is difficult due to complex deformations, u...

متن کامل

Designing, validation, and reliability assessment of software to acquire kinematics parameters of motion by image processing

Motion analysis systems are useful and effective equipment in biomechanics research. Unfortunately these systems are available for few researchers because these are expensive equipment. The aim of this study was to design and validation of a practical and inexpensive software, to determine the exact markers position in space and compute the kinematic of movement. In designing the software, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Vision and Image Understanding

دوره 131  شماره 

صفحات  -

تاریخ انتشار 2015